The Man Who Saved the Owens Pupfish

Owens pupfish

51 years ago today a man named Edwin Philip Pister rescued an entire species from extinction.

Less than 2.5 inches in length, the Owens pupfish is a silvery-blue fish in the family Cyprinodontidae. Endemic to California’s Owens Valley, 200 miles north of Los Angeles, the fish has lived on the planet since the Pleistocene, becoming a new species when its habitat was divided by changing climatic conditions, 60,000 years ago.

For thousands of years, the Owens Valley was largely filled with water, crystal-clear snowmelt that still streams off the jagged, precipitous slab faces of the Sierra Nevada mountains. Pupfish were common, with nine species populating various lakes and streams from Death Valley to an ara just south of Mammoth Lakes. The Paiute people scooped them out of the water and dried them for the winter.

In the late 19th century, Los Angeles was a rapidly growing young metropolis, still in throes of growing pains that would last decades. While considered an ugly younger sibling to the city of San Francisco, Los Angeles had the appeal of near year-round sunshine and sandy beaches whose beauty that rivaled those of the French Riviera.

William Mulholland

But by the late 1900s, the city began outgrowing its water supply. Fred Eaton, mayor of Los Angeles, and his water czar, William Mulholland, hatched a plan to build an aqueduct from Owens Valley to Los Angeles. Most Californians know the story. Through a series of shady deals, Mulholland and Eaton managed to get control of the water in the Owens Valley and, in 1913, the aqueduct was finished. It was great news for the new city, but terrible news for many of the creatures (not to mention the farmers) who depended on the water flowing into and from the Owens Lake to survive.

One of those animals is the Owens pupfish.

So named because they exhibit playful, puppy-like behavior, the Owens pupfish rapidly began to disappear. Pupfish are well-known among scientists for being able to live in extreme and isolated situations. They can tolerate high levels of salinity. Some live in water that exceeds 100° Fahrenheit, and they can even tolerate up to 113° degrees for short periods. They are also known to survive in near-freezing temperatures common in the lower desert.

But hot or cold are one thing. The disappearance of water altogether is another.

As California has developed, and as climate change has caused temperatures to rise, thus increasing evaporation, all of California’s pupfish populations have come under stress. Add to these conditions, the early 20th-century introduction by the California Department of Fish and Wildlife of exotic species like largemouth bass and rainbow trout to lakes and streams in the eastern Sierras, and you get a recipe for disaster. And disaster is exactly what happened.

The remains of the Owens River flowing through Owens Valley in California. Credit: Erik Olsen

Several species of pupfish in the state have been put on the endangered species list. Several species, including the Owens pupfish, the Death Valley Pupfish and the Devils Hole pupfish are some of the rarest species of fish on the planet. The Devils Hole pupfish recently played the lead role in a recent story about a man who accidentally killed one of the fish during a drunken spree. According to news stories, he stomped on the fish when he tried to swim in a fenced off pool in Death Valley National Park. He went to jail.

The impact on the Owens pupfish habitat was so severe that in 1948, just after it was scientifically described, it was declared extinct.

That is, until one day in 1964, when researchers discovered a remnant population of Owens pupfish in a desert marshland called Fish Slough, a few miles from Bishop, California. Wildlife officials immediately began a rescue mission to save the fish and reintroduce them into what were considered suitable habitats. Many were not, and by the late 1960s, the only remaining population of Owens pupfish, about 800 individuals, barely hung on in a “room-sized” pond near Bishop.

On August 18, 1969, a series of heavy rains caused foliage to grow and clog the inflow of water into the small pool. It happened so quickly, that when scientists learned of the problem, they realized they had just hours to save the fish from extinction.

Edwin Philip Pister
Edwin Philip Pister

Among the scientists who came to the rescue that day was a stocky, irascible 40-year old fish biologist named Phil Pister. Pister had worked for the California Department of Fish and Game (now the California Department of Fish and Wildlife) most of his career. An ardent acolyte of Aldo Leopold, regarded as one of the fathers of American conservation, Pister valued nature on par, or even above, human needs. As the Los Angeles Times put it in a 1990 obituary, “The prospect of Pister off the leash was fearsome.”

“I was born on January 15, 1929, the same day as Martin Luther King—perhaps this was a good day for rebels,” he once said.

Pister had few friends among his fellow scientists. Known for being argumentative, disagreeable, and wildly passionate about the protection of California’s abundant, but diminishing, natural resources, Pister realized that immediate action was required to prevent the permanent loss of the Owens pupfish. He rallied several of his underlings and rushed to the disappearing pool with buckets, nets, and aerators.

Within a few hours, the small team was able to capture the entire remaining population of Owens pupfish in two buckets, transporting them to a nearby wetland. However, as Pister himself recalls in an article for Natural History Magazine:

“In our haste to rescue the fish, we had unwisely placed the cages in eddies away from the influence of the main current. Reduced water velocity and accompanying low dissolved oxygen were rapidly taking their toll.”

Los Angeles Aqueduct. Credit: Erik Olsen

As noted earlier, pupfish are amazingly tolerant of extreme conditions, but like many species, they can also be fragile, and within a short amount of time, many of the pupfish Pister had rescued were dying, floating belly up in the cages. Pister realized immediate action was required, lest the species disappear from the planet forever. Working alone, he managed to net the remaining live fish into the buckets and then carefully carried them by foot across an expanse of marsh. “I realized that I literally held within my hands the existence of an entire vertebrate species,” he wrote.

Pister managed to get the fish into cool, moving water where the fish could breathe and move about. He says abouty half the the population survived, but that was enough.

Today, the Owens pupfish remains in serious danger of extinction. On several occasions over the last few decades, the Owens pupfish has suffered losses by largemouth bass that find their way into the pupfish’s refuges, likely due to illegal releases by anglers. In 2009, the US Fish and Wildlife Service estimated that five populations totaling somewhere between 1,500 and 20,000 Owens pupfish live in various springs, marshes, and sloughs in the Owens Valley, where they are federally protected.

by Erik Olsen

Additional material:

Oral history video featuring Phil Pister recounting his career and that fateful day.

Read previous articles in the California Science Weekly.

https://atomic-temporary-158141606.wpcomstaging.com/2020/03/04/why-are-californias-redwoods-and-sequoias-so-big/

Mars helicopter Ingenuity is ready for its “Wright Brothers” moment

If all goes well, in late July, NASA will do something it’s never done before. The agency will launch a new mission to Mars with the aim of landing a small helicopter on the surface that will perform several test missions to see if we can fly on the surface of the Red Planet.

This is not an easy task, but it will be massively historic.

“This is very analogous to the Wright brothers moment, but on another planet,” MiMi Aung, the project manager of the Mars helicopter told the New York Times.

The helicopter will be aboard the Perseverance, the fifth robotic rover NASA has sent to Mars. The copter and the rover were both designed and built at at at NASA’s Jet Propulsion Laboratory in La Canada Flintridge. The project has been in development over the past six years.

Credit: JPL

If successful, the small helicopter will initiate a new era for robotic exploration, with the opportunity to get an aerial view of Mars and possibly other worlds in the solar system.

Flying on Mars is not the same as doing so here on earth. There is little atmosphere on Mars, and so taking off requires more power and larger helicopter blades than here on earth. In fact, the atmosphere on the red planet is just 1/100th as dense as Earth’s. Scientists say that flying on Mars is the same as flying at an altitude of 100,000 feet on Earth. That’s three Mount Everests. No helicopter on earth has ever flown higher than 45,000 feet.

JPL scientists say that the project would have been impossible just 10 years ago, but a revolution in the miniaturization of electronics, high-powered batteries and lightweight materials for rotor blades has made the new mission possible.

It took several iterations and experiments to get the copter to lift off in s straight line inside a specially-designed chamber that simulated the Mars atmosphere.

Over 30 days, the helicopter will make up to five flights. For most of the time, however, the copter will remain still, waiting for solar panels to recharge the batteries.

The first is to go up about a few feet and hover for up to 30 seconds, then land. Subsequent flights will be longer, higher, farther. The plan is to test the copter on several short liftoffs on Mars, reaching perhaps just a few feet above the dusty plain where it will be released from the Perseverance. On the fifth flight, assuming all systems are go, the copter will lift off to 15 feet and fly out about 500 feet and come back. Two cameras will help the copter navigate and the flight will last a minute and a half.

This is an extremely exciting time for JPL’s planetary exploration project. The Juno project has been sending back stunning images of Jupiter, including strange hexagonal cloud formations at the poles of the giant planet.

Credit: JPL

Enjoying the California Science Weekly? Check out our weekly newsletter that comes out every Friday.

Also, check out one of our recent features on the California scientific illustrator David Goodsell whose watercolor painting of the coronavirus is “beautiful, but deadly”.

Ancient Bristlecone Pines by Drone

bristlecones

Last week we had the opportunity to head up Highway 395 into Big Pine where we made a left up to the Ancient Bristlecone Pine Forest. Because of the coronavirus, the place was empty. Not a soul to be seen anywhere.

We did a feature on bristlecones a few months ago in which we marveled at the majesty and seeming immortality of these incredible organisms, probably the longest living things on the planet. We brought along a drone to get some shots of these trees, whose gnarled, swirling branches are like something out of a fantasy novel. Take a minute (literally a minute) to enjoy.

Beautiful, but Deadly: Painting the Coronavirus

Pandemic as art.

You’ve seen it. Probably a thousand or more times by now. It’s the image of a greyish sphere, hanging in space, barbed with blood-red spikes. It looks like an undersea Navy mine… or perhaps a dog’s chew toy. The Covid-19 coronavirus illustration is one of the best known and most viewed scientific illustrations in history. Released in early February by the Centers for Disease Control and Prevention, the image has been seen on news sites, in magazines, even on SNL.

That digital illustration, created by two medical illustrators at the CDC’s Graphic Services Branch — Alissa Eckert and Dan Higgins — will forever be the iconic image of the current pandemic. As a piece of digital art, it is lovely. As a piece of science, it is terrifying.

But another image of the virus was painted in watercolor by the San Diego-based scientist and biological artist David Goodsell, one of the most famous and accomplished scientific illustrators alive today. Goodsell has published several books of his illustrations, and many of his lavishly colored paintings can be found in medical school textbooks. A few have won awards. Some have even hung in museums. Goodsell’s coronavirus image is not nearly as famous, but as a work of art — and a work of science — it is just as mesmerizing. And more lovely.

Goodsell is an Associate Professor in the Department of Integrative Structural and Computational Biology at the Scripps Research Institute in San Diego. Most of the time, he works as a scientific illustrator (or molecular artist), a growing field in science, with numerous university programs available around the country. While the CDC image was created entirely within a computer, Goodsell’s work tends to be done in watercolor, a much older medium, but one that gives his images a vibrant beauty, making terrible pathogens like E-coli, Ebola and HIV, not to mention coronavirus, look like a psychedelic dream or a candy-colored nightmare.

Ebola virus: David Goodsell

Goodsell says that creating images like these serve a very important purpose: allowing people to picture something that otherwise would be unseeable.

“I was trying to put a face on the virus, so it’s not invisible, so we can see what we’re fighting,” Goodsell told California Science Weekly.

Because there are so many other images out there of the virus, it might seem like creating an illustration of it would be simple, but Goodsell says that there’s a tremendous amount of science involved, and that he strives to be as technically accurate as possible, showing only the known proteins in the virus and how they might be organized within the virion, the technical term for a virus particle.

David Goodsell in his home studio.

At the time that the painting was made, says Goodsell, not much was known about the virus. Its genetic structure was still being figured out. But since the virus is so similar to the SARS virome, Goodsell used a lot of the information from existing data on that virus, to create his work of art. Like most molecular artists, Goodsell draws from existing information about the proteins that make up a virus, much of which is freely available in the Protein Data Bank, a global online repository of genetic and structural data on thousands of the proteins which make up all living things.

“I want it to be something that people want to look at. I don’t particularly want it to look scary or monsterish.”

David Goodsell

The Protein Data Bank contains “some really nice structures of the spike protein on the outside of the virus.” Those spike proteins (colored a deep blood-red in the CDC image, but a bubblegum pink in Goodsell’s painting) are the means by which the virus attaches itself to our own cells before injecting them with its RNA, which will rapidly replicate inside and potentially wreak havoc in our bodies.

“If you Google coronavirus, people are using a whole range of different amounts of data, and most of the pictures are total garbage. Somebody has heard there are spikes on the virus, so they put things that look like big nails on the surface,” says Goodsell. “The CDC’s and my picture are much more tied to the data.”

Since creating the image in February, however, more information has come out about the virus’s genetic composition, and Goodsell may revisit his image, although he thinks it remains accurate. Little was known, for example, about the RNA contents of the virus, the genetic information that invades human cells. He also notes that the virus’s shape is not as uniform as depicted in most illustrations, and that any effort to create an image of it requires a significant amount of artistic license. For example, the CDC image, while accurate in terms of various proteins pictured, is likely not the neatly organized spiked ball floating in space that most people have come to know.

“I was trying to put a face on the virus, so it’s not invisible, so we can see what we’re fighting.”

David Goodsell

“It’s not a perfect sphere and it comes in a range of different sizes,” says Goodsell. “All of my reading is that the spikes are arranged randomly on the surface.”

Another quality that is entirely up to the artist is color. None of the molecules in the virus have much color, so molecular artists like Goodsell (and Alissa Eckert and Dan Higgins at the CDC), choose colors that they believe will be both pleasing and informative, helping to differentiate the various structures within the virus particle. “Color is used to help improve the clarity of what the structures are. The CDC has used that bright red to show what they think is the most important part, the spike on the surface,” says Goodsell.

For Goodsell’s part, his palette is far less sinister. He favors delicate pastels and swooping forms over the stark primary colors and jagged spikes of most coronavirus images. “I want it to be something that people want to look at. I don’t particularly want it to look scary or monsterish.”

That said, Goodsell says he’s been getting a lot of comments about the painting on Twitter. “Invariably, they say it’s beautiful but deadly.”

The Magic, Wonder, and Science of Ocean Bioluminescence in Southern California

How and why so many of earth’s creatures make their own light.

Last week, a video went viral showing a small pod of dolphins swimming at night off the coast of Newport Beach. Seeing dolphins off Southern California is not particularly unusual, but this was a very special moment. In the video, the dolphins appear to be swimming through liquid light, their torpedo-shaped bodies generating an ethereal blue glow like a scene straight out of Avatar. The phenomenon that causes the blue glow has been known for centuries, but that in no way detracts from its wonder and beauty. The phenomenon is called bioluminescence, and it is one of nature’s most magical and interesting phenomena. 

Bioluminescence is the production and emission of light by a living organism (thanks, Wikipedia!), and it is truly one of the great magical properties of nature. At its core, bioluminescence is the way animals can visually sense the world around them. It’s all built on vision, one of the most fascinating and useful senses in the animal kingdom. Seeing is impossible without light, and so it makes sense that in the absence of sunlight, some animals created a way to make their own light. 

//www.instagram.com/embed.js

I have been fascinated by bioluminescence since I was a child growing up near Newport Beach when the occasional nearshore red tide bloom would illuminate the waves like we are seeing now. It’s a truly magical experience. I’ve also experienced bioluminescence in various places around the world, including Thailand, Mexico, and Puerto Rico. In fact, 13 years ago, I made the trip to Puerto Rico’s Vieques Island and its world-famous Mosquito Bay, for the sole purpose of seeing the bay in person and swimming and kayaking in its warm, glowing waters (there is a rental outfit there that does tours at night…it’s amazing. Trust me.)

The phenomenon of bioluminescence is surprisingly common in nature. Both terrestrial and sea animals do it, as do plants, insects (for example, fireflies), and fungi. Curiously, no mammals bioluminesce. That we know of. The ocean is definitely the place that animals and plants bioluminesce the most. Which makes sense because deep in the ocean, there is little or no light. Light is absorbed very quickly in the water, so while on land you might be able to see a single streetlight miles away, after about 800 feet, light largely disappears in the depths of the ocean. I know. I’ve been there

It’s estimated that as many as 90 percent of the animals living in the open ocean, in waters below 1,500 feet, make their own light. Why they do this is in part a mystery, but scientists are pretty sure they understand the basic reasons animals do it: to eat, to not be eaten, and to mate. In other words, to survive. And to communicate. 

Credit: NOAA

The angler fish dangles a lighted lure in front of its face to attract prey. Some squid expel bioluminescent liquid, rather than ink, to confuse their predators. A few shrimp do too. Worms and small crustaceans use bioluminescence to attract mates. When it is attacked, the Atolla jellyfish (Atolla wyvillei) broadcasts a vivid, circular display of bioluminescent light, which scientists believe may be a kind of alarm system. The theory is that the light will attract a larger predator to go after whatever is attacking the jellyfish. While this is still a theory, a 2019 expedition that took the very first images of the giant squid used a fake Atolla jellyfish designed by the scientist Edith Widder to lure the squid into frame. I had the fortune of interviewing Dr. Widder, one of the world’s top experts on bioluminescence, several years ago for the New York Times.   

Edith Widder holds a vial of bioluminescent plankton. Credit: Erik Olsen

Making light is clearly beneficial. That’s why, say evolutionary biologists, it appears that bioluminescence has arisen over forty separate times in evolutionary history. The process is called convergent evolution and is the same reason that bats and birds and insects all evolved to fly independently. Clearly, flying confers a major advantage. So does making light.

While the Internet is awash in images of bioluminescent creatures, very often the term is confused with fluorescence. Even reputable science organizations sometimes do this. Bioluminescence is not the same thing as fluorescence. Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. Many animals like scorpions and coral fluoresce, meaning that they appear to glow a bright otherworldly color when blue light is shone on them. The key idea here is that the animals are not generating their own light, but rather contain cells that reflect light in fluorescence.  

Fluorescent (not bioluminescent) scorpion in Baja California, Mexico. Credit: Erik Olsen

So what about the recent explosion of bioluminescence in Southern California? The light we are seeing is made by tiny organisms, type of plankton called dinoflagellates (Lingulodinium polyedra) that occasionally “bloom” off-shore. Often, this is the result of recent storms that bring tons of nutrient-laden runoff into the ocean. The tiny plankton feed on nitrogen and other nutrients that enter the ocean from rivers and streams and city streets. A lot of the nutrients come from California’s vast farms, specifically the fertilizer used to grow California’s fruits and vegetables. With all that “food” coming into the ocean system, the algae rapidly multiply, creating red tides, or vast patches of ocean that turn dark brownish red, the color of pigment in the algae that helps protect it from sunlight. Michael Latz, a scientist at Scripps Institution of Oceanography at UC San Diego, says that the animals use bioluminescence as a predator avoidance behavior. 

Sometimes red tides are toxic and can kill animals and make people sick who swim in the ocean. (That does not appear to be the case in California right now). At night, when they are still, the animals can’t be seen. But when the water is disturbed, which adds oxygen into the mix, a chemical reaction takes place in their bodies that causes luciferin to oxidize and becomes catalyzed to make luciferase, which emits photons or particles of light. It’s not understood exactly how or why this happens, but we do know there are many kids of luciferase. In fact, scientists know the genes that create luciferases and have implanted them into organisms like mice, silkworms, and potatoes so that they glow. They’ve made bioluminescent plants, too.

A shrimp emits a bioluminescent cloud to ward of predators. Credit: NOAA

Perhaps the most magical thing about bioluminescence is that it doesn’t create heat. Almost all the lights we are familiar with, particularly incandescent light, like that from generic light bubs, generate a tremendous amount of heat. Of course, we have learned how to make this heatless chemical light ourselves, easily experienced when you crack and shake a glow stick, mixing together several chemicals in a process similar to the one animals in the ocean use to create bioluminescent light. But the light from glow sticks is not nearly strong enough to illuminate your back yard. In the last few decades, we’ve learned how to make another kind of light that does not produce a great amount of heat: LEDs. Though the process is very different, the concept is the same: talking a molecule or a material and promoting it to an excited state. Where electricity is used, in the case of LEDs, it’s called electroluminescence, where it’s a chemical reaction it’s chemiluminescence, of which bioluminescence is one form. 

Whether you are a religious person or not (I’m not) it’s no coincidence that one of the first things God said was, “Let there be light!” Light and light energy give us plants and animals to eat, and allows us to see. It heats our world, it fuels our cars (oil is really just dead organic material compressed over time, and that organic material would not have existed without sunlight). While some animals deep in the ocean can live without light, most of us cannot. And it’s a rather astounding feat of nature than when there is no light, many of the earth’s creatures have evolved to produce it themselves. If you don’t believe me, just go down to the Southern California shore tonight, and leave your flashlight at home. You won’t need it.

How one building survived the San Francisco earthquake and changed the world.

When the 1906 earthquake struck San Francisco, most of the buildings at the time in the city were made of wood (like redwood harvested from the once vast stands of coastal redwood that grew in Northern California). This did not bode well for San Franciscans because immediately after the earthquake, a series of fires spread quickly over the city, largely razing to the ground almost every wooden structure that withstood the tremblor.

But curiously, a few structures did survive largely intact. Among them, are the Old United States Mint (also known as The Granite Lady) and a half-finished warehouse built for the Bekins Van and Storage Company at Mission and Thirteenth.

The Bekins building survived because it was made of a relatively new material that had largely been ignored (and vigorously opposed) in California. That material is reinforced concrete.

A problem with concrete is that it has great compressive strength. It can withstand high pressure without cracking. But it lacks tensile strength, meaning it cannot bend without shattering. Throughout the late 1800s, various builders tried to strengthen concrete with metal, mostly iron. With the advent of steel, which was becoming increasingly cheap to manufacture, and with a new technique based on twisting the metal to allow it to adhere better to the liquid concrete, a new era of construction was born.

In the years before the 1906 earthquake, the use of concrete was resisted by the legions of bricklayers, masons and powerful builders’ unions that saw in the material a threat to their survival. Others called the material ugly and not worthy of a great city like San Francisco.

One trade publication at the time wrote: “a city of the dull grayness of concrete would defy all laws of beauty. Concrete does not lend itself architecturally to anything that appeals to the eye. Let us pause a moment before we transform our city into such hideousness as has been suggested by concrete engineers and others interested in its introduction.”

The resistance against concrete was formidable enough that the material was not used widely in the city. Even after the earthquake, it took a while for people to grasp its value. Despite the overwhelming evidence that this new building material could dramatically help a city not only withstand an earthquake but fire as well, San Francisco building codes still forbade the use of concrete in high, load-bearing walls.

San Francisco today. Unsplash: Jared Erondu

It wasn’t until two years later, in a contentious San Francisco board of supervisors meeting, that the city changed its building codes to allow the widespread use of reinforced concrete. By 1910, the city had issued permits for 132 new reinforced concrete buildings. The science of building advanced hugely in the wake of the disaster.

Today, most every tall building in the world makes use of steel reinforced concrete. The survival of the Bekins building was transformational for not only the city of San Francisco but in many ways, it heralded a watershed moment in the history of architecture, construction, and the planet’s cities.

by Erik Olsen

The Mismeasure by Man – How We Overstate the Length of the Blue Whale, Earth’s Largest Creature

blue whale

The blue whale (Balaenoptera musculus) is a truly magnificent creature. Hunted nearly to extinction in the 19th and 19th centuries, the blue whale has staged a hopeful recovery in the last five decades, since commercial whaling was outlawed by the international community in 1966 (although some Soviet whale hunting continued into the early 1970s). 

Before commercial whaling began, it is estimated that there were some 400,000 blue whales on earth. 360,000 were killed in the Antarctic alone. The International Union for Conservation of Nature estimates that there are probably between 10,000 and 25,000 blue whales worldwide today, divided among some five separate populations or groups. One of those groups, the largest in the world, is called the Eastern North Pacific population, consists of some 2,000 animals and makes an annual migration from the warm waters of Baja California to Alaska and back every year. Many swim so close to shore that a lucrative whale watching industry has emerged in places like Southern California, where numerous fishing vessels have been converted into whale watching ships.  

Blue whales were in the news recently with the publication of two papers by Stanford’s Jeremy Goldbogen at the Hopkins Marine Station in Pacific Grove, California. The first paper recorded a leviathan’s heartbeat at great depths in Monterey Bay, revealing the somewhat astonishing fact that the whales’ heart rate slows significantly the deeper they go, reaching an average minimum of about four to eight beats per minute, with a low of two beats per minute. That figure was about 30 to 50 percent lower than predicted, said the researchers. The second paper looked at the blue whale’s size, and attempted to quantify how whales got so big and, well, why they are not bigger.  

Blue whale in Sri Lanka. Photo: Erik Olsen

So let’s talk for a minute about size because there are some misconceptions out there about how big these animals can get. 

The blue whale is frequently cited as the largest animal to have ever lived. That’s true (so far as we know) if by size we mean weight. The largest dinosaur that we’ve ever found fossils for is the Argentinosaurus. The Argentinosaurus lived about 100 million to 93 million years ago during the Cretaceous period in what is now Argentina and is part of a group of dinosaurs known as titanosaurs. Titanosaurs were long-necked sauropods, four-legged, herbivorous animals that often grew to extraordinary sizes. We can only speculate about the actual size of Argentinosaurus since all that we know comes from just 13 bones. Scientists estimate that the Argentinosaurus probably weighed somewhere around 70-80 tons, maybe reaching as much as 90 tons. The Natural History Museum in London suggests the animal may have been as long as 115 feet. 

Argentinosaurus: Nobu Tamura

Another contender for the world’s largest dinosaur is Dreadnoughtus, and in this case, the fossil record is a bit more informative. The fossils for Dreadnoughtus contained 115 bones, representing roughly 70 percent of the dinosaur’s skeleton behind its head. Dreadnoughtus was said to reach lengths of about 85 feet with an estimated mass of about 65 tons

However, estimates for the top size of blue whales go up to 200 tons. And, as many articles and references about blue whales will tell you, blue whales can reach lengths of up to 100 feet long or more. The number of legitimate science books, articles, Web sites and even esteemed science journals that quote this number is in the thousands. Google it

But here’s the problem: not a single blue whale has ever been scientifically verified as being 100 feet long. That’s right. Not one. 

That said, there are two references in scientific papers of blue whales that are near 100 feet. The first is a measurement dating back to 1937. This was at an Antarctic whaling station where the animal was said to measure 98 feet. But even that figure is shrouded in some suspicion. First of all, 1937 was a long time ago, and while the size of a foot or meter has not changed, a lot of record-keeping during that time is suspect, as whales were not measured using standard zoological measurement techniques. The 98-foot specimen was recorded by Lieut. Quentin R. Walsh of the US Coast Guard, who was acting as a whaling inspector of the factory ship Ulysses. Sadly, there is scant detail available about this measurement and it remains suspect in the scientific community.

The second is from a book and a 1973 paper by the late biologist Dale W. Rice, who references a single female in Antarctica whose “authenticated” measurement was also 98 feet. The measurement was conducted by the late Japanese biologist Masaharu Nishiwaki. Nishiwaki and Rice were friends, and while both are deceased, a record of their correspondence exists in a collection of Rice’s papers held by Sally Mizroch, co-trustee of the Dale W. Rice Research Library in Seattle. Reached by email, Dr. Mizroch said that Nishiwaki, who died in 1984, was a very well-respected scientist and that the figure he cited should be treated as reliable. 

Blue whale tail fluke in Sri Lanka. Credit: Erik Olsen

According to Mizroch, who has reviewed many of the Antarctic whaling records from the whaling era, whales were often measured in pieces after they were cut up, which greatly introduces the possibility for error. That is likely not the case with the 98-foot measurement, which took place in 1947 at a whaling station in Antarctica where Nishiwaki was stationed as a scientific observer. 

Proper scientific measurements, the so-called “standard method”, are taken by using a straight line from the tip of the snout to the notch in the tail flukes. This technique was likely not used until well into the 20th century, said Mizroch. In fact, it wasn’t until the 1940s that the use of a metal tape measure became commonplace. According to Dan Bortolotti, author of Wild Blue: A Natural History of the World’s Largest Animal, many of the larger whales in the whaling records  — especially those said to be over 100 feet — were probably measured incorrectly or even deliberately exaggerated because bonus money was paid to whalers based on the size of the animal caught. 

So, according to the best records we have, the largest blue whale ever properly measured ws 98 feet long. Granted, 98 feet is close to 100 feet, but it’s not 100 feet and it’s certainly not over 100 feet, as so many otherwise reputable references state. 

So setting aside the fact that so many sources say the blue whale has reached 100 feet or more, and that there is no scientific evidence proving this, a key question to ask is how large can whales become. The second scientific paper cited above in Science looked at energetics, the study of how efficiently animals ingest prey and turn the energy it contains into body mass. 

National Oceanic and Atmospheric Administration

Most baleen whales are so-called lunge feeders. They open their mouths wide and lunge at prey like krill or copepods, drawing in hundreds of pounds of food at a time. Lunge-feeding baleen whales, it turns out, are wonderfully efficient feeders. The larger they become, the larger their gulps are, and the more food they draw in. But they also migrate vast distances, and oftentimes have to dive deep to find prey, both of which consume a large amount of energy. 

Using an ocean-going Fitbit-like tag, the scientists tracked whales’ foraging patterns, hoping to measure the animals energetic efficiency, or the total amount of energy gained from foraging, relative to the energy expended in finding and consuming prey. Using data from numerous expeditions around the globe that involved tens of thousands of hours of fieldwork at sea on living whales from pole to pole, the team concluded that there are likely ecological limits to how large a whale can become and that they are likely constrained by the amount of food available in their specific habitat.    

John Calambokidis, a Senior Research Biologist and co-founder of Cascadia Research, a non-profit research organization formed in 1979 based in Olympia, Washington, has studied blue whales up and down the West Coast for decades. He told California Science Weekly that the persistent use of the 100-foot figure can be misleading, especially when the number is used as a reference to all blue whales. 

The sizes among different blue whale groups differ significantly depending on their location around the globe. Antarctic whales tend to be much bigger, largely due to the amount of available food in cold Southern waters. The blue whales we see off the coast of California, Oregon, Washington and Alaska, are part of a different group from those in the North Pacific. They differ slightly both morphologically and genetically, and they consume different types and quantities of food. North Pacific blue whales tend to be smaller, and likely have always been so. Calambokidis believes that the chances any blue whales off the West Coast of the US ever reaching anything close to 100 feet is “almost non-existent”. 

We emailed Regina Asmutis-Silvia, Executive Director North America of Whale and Dolphin Conservation, to ask about this discrepancy among so many seemingly authoritative outlets. She wrote: “While it appears biologically possible for blue whales to reach or exceed lengths of 100’, the current (and limited) photogrammetry data suggest that the larger blue whales which have been more recently sampled are under 80 feet.” (Photogrammetry is the process of using several photos of an object (like a blue whale) to extract a three-dimensional measurement. from two-dimensional data. It is widely used in biology, as well as engineering, architecture and many other disciplines.) Photogrammetry measurements are now often acquired by drones and have proven to be a more accurate means of measuring whale size at sea. 

Antarctic whaling station.

Here’s a key point: In the early part of the 20th century and before, whales were measured by whalers for the purpose of whaling, not measured by scientists for the purpose of science. Again, none of this is to say that blue whales aren’t gargantuan animals. They are massive and magnificent, but if we are striving for precision, it is not accurate to declare, as so many articles do, that blue whales reach lengths of 100 feet or more. This is not to say it’s impossible that whales grew to or above 100 feet, it’s that, according to the scientific records, none ever has. 

A relevant point from Dr. Asmutis-Silvia about the early days of Antarctic whaling: “Given that whales are long-lived and we don’t know at what age each species reaches its maximum length, it is possible that we took some very big, very old whales before we started to measure what we were taking.” 

This seems entirely reasonable, but the fact still remains that we still do not have a single verified completely reliable account of any blue whale, any animal for that matter, ever growing to 100 feet. References to the 100-foot number, which we reiterate are found everywhere, also seem to suggest that blue whales today reach that length, and this is not backed up by a shred of evidence. The largest blue whales measured using the modern photogrammetry techniques mentioned above have never surpassed 90 feet. 

In an email exchange with Jeremy Goldbogen, the scientist at Stanford who authored the two studies above, he says that measurements with drones off California “have been as high as 26 meters” or 85 feet. 

So, why does nearly every citation online and elsewhere regularly cite the 100-foot number? It probably has to do with our love of superlatives and round numbers. We have a deep visceral NEED to be able to say that such and such animal is the biggest or the heaviest or the smallest or whatever. And, when it comes down to it, 100 feet is a nice round number that rolls easily off the tongue or typing fingers. 

All said, blue whales remain incredible and incredibly large animals, and deserve our appreciation and protection. Their impressive rebound over the last half-century is to be widely celebrated, but let’s not, in the spirit of scientific inquiry, overstate their magnificence. They are magnificent enough.  


If you are interested in other organisms on the planet that are the world’s largest, check out our recent story on California Redwoods and Giant Sequoias.

Why are California’s redwoods and sequoias so big and tall?

Photo by Spencer Backman on Unsplash

Part 2 of an ongoing series about California’s unique and remarkable trees.

California is a state of superlatives. The oldest living thing lives here. The largest animal in the history of the world swims off our shores. The hottest temperature ever recorded baked visitors at Death Valley’s Furnace Creek back in 1913. California boasts the highest point in the contiguous United States and arguably the tallest waterfall in the country.

We also have the world’s tallest and biggest trees.

California’s giant sequoias and redwoods are nature’s skyscrapers. Redwoods exist in a few narrow pockets in Northern and Central California and into Southern Oregon. Sequoias live exclusively in small groves in central and Northern California with the largest grouping of them found in Sequoia National Park. These two tree species are wonders of the biological world. They are also some of the most magnificent things to behold on the planet.

I have personally climbed the Stagg tree (see photo below), the fifth-largest sequoia in the world, and I will forever remember the experience.

Erik Olsen climbs the Stagg tree, a giant sequoia.
The author climbs the Stagg tree, the fifth-largest tree in the world. (Erik Olsen)

We are lucky to still have our big trees, what’s left of them, anyway. Just a century and a half ago, old-growth redwoods and sequoias were relatively plentiful. People marveled at them, with some early settlers in California spinning unbelievable yarns of trees that rise from the earth “like a great tower“. They also saw them as a bounteous resource, ripe for plunder.

By 1900, nearly all of California’s tall trees had been purchased by private landowners who saw in the trees not beauty, but dollar signs. By 1950, nearly all of the old-growth redwoods and sequoias had been cut down for timber and other purposes. Today, only 5 percent of the old-growth coast redwood forest remains. The largest surviving stands of ancient coast redwoods are found in Humboldt Redwoods State Park, Redwood National and State Parks and Big Basin Redwoods State Park. It’s a wonder and a blessing that there are some left. And even then, they face an uncertain future thanks to climate change.

Professional tree climber Rip Thompkins at the top of the Stagg tree, a giant sequoia.

Sequoias and redwoods are closely related. The primary difference between sequoias and redwoods is their habitat. Redwoods live near the coast, while sequoias live in subalpine regions of California. Redwoods are the tallest trees in the world. Sequoias are the biggest, if measured by circumference and volume. Redwoods can grow over 350 feet (107 m). The tallest tree in the world that we know of is called the Hyperion, and it tickles the sky at 379.7 feet (115.7 m). But it is quite possible another tree out there is taller than Hyperion. Redwoods are growing taller all the time, and many of the tallest trees we know of are in hard to reach areas in Northern California. Hyperion was only discovered about a decade ago, on August 25, 2006, by naturalists Chris Atkins and Michael Taylor. The exact location of Hyperion is a secret to protect the tree from damage.

The giant sequoia (Sequoiadendron giganteum) is Earth’s most massive living organism. While they do not grow as tall as redwoods – the average size of old-growth sequoias is from 125-275 feet – they can be much larger, with diameters of 20–26 feet. Applying some basic Euclidean geometry (remember C = πd?), that means that the average giant sequoia has a circumference of over 85 feet.

Many of the remaining sequoias exist on private land, and in fact, one of the largest remaining stands of Sequoias in the world – the Alder Creek Grove of giant sequoias – was just bought by the Save the Redwoods League conservation group for nearly $16 million

Sequoias grow naturally along the western slope of the Sierra Nevada mountain range at an altitude of between 5,000 and 7,000 feet. They tend to grow further inland where the dry mountain air and elevation provide a comfortable environment for their cones to open and release seeds. They consume vast amounts of runoff from Sierra Nevada snowpack, which provides groves with thousands of gallons of water every day. Many scientists are deeply concerned about how climate change might affect the grand trees, as drought conditions potentially deprive them of water to survive.

General Sherman tree
The General Sherman tree in Sequoia National Park. Wikimedia.

The world’s largest sequoia, thus the world’s largest tree, is General Sherman, in Sequoia National Park. General Sherman is 274.9 feet high and has a diameter at its base of 36 feet, giving it a circumference of 113 feet. Scientists estimate that General Sherman weighs some 642 tons, about as much as 107 elephants. The tree is thought to be 2,300 to 2,700 years old, making it one of the oldest living things on the planet. (To learn more about the oldest thing in the world, also in California, see our recent feature on Bristlecone pines.) Interesting fact: in 1978, a branch broke off General Sherman that was 150 feet long and nearly seven feet thick. Alone it would have been one of the tallest trees east of the Mississippi.

Many sequoias exist on private land. Just last month, one of the largest remaining private stands of Sequoias in the world – the Alder Creek Grove of giant sequoias – was bought by the Save the Redwoods League conservation group for nearly $16 million. The money came from 8,500 contributions from individual donors around the world. The property includes both the Stagg Tree mentioned above and the Waterfall Tree, another gargantuan specimen. The grove is considered “the Crown Jewel” of remaining giant Sequoia forests.

Redwoods (Sequoia sempervirens), also known as coast redwoods, generally live about 500 to 700 years, although some have been documented at more than 2,000 years old. While wood from sequoias was found to be too brittle for most kinds of construction, the redwoods were a godsend for settlers and developers who desperately needed raw material to build homes and city buildings, to lay railroads, and erect bridge trestles. The timber companies who profited from redwoods only began to cut them down in earnest a bit over a century ago. But cut them down they did, with vigor and little regard for the preservation of such an amazing organism. After World War II, California experienced an unprecedented building boom, and the demand for redwood (and Douglas fir) soared. Coastal sawmills more than tripled between 1945 and 1948. By the end of the 1950s, only about 10 percent of the original two-million-acre redwood range remained untouched.


So how did these trees get so big and tall? We don’t know for sure, but some scientists believe it has to do with the climate in which they grow. Sequoias benefit from Californa’s often prodigious snowpack, which seeps into the ground, constantly providing water to the roots of the trees. Redwoods get much of their water from the air, when dense fog rolls in from the coast and is held firm by the redwoods themselves and the steep terrain. The trees’ leaves actually consume water in fog, particularly in their uppermost shoots. According to scientists who study the trees using elaborate climbing mechanisms to reach the treetops, in summer, coast redwoods can get more than half of their moisture from fog. (In fact, fog plays a central role in sustaining several of California’s coastal ecosystems.) The reason is that fog is surprisingly dense with water. One study from scientists Daniel Fernandez of California State University, Monterey Bay, showed that a one-square-meter fog collector could harvest some 39 liters, or nearly 10 gallons, of water from fog in a single day.

Another answer to the redwood’s size may lie in the tree’s unusual, enormous genome. The ongoing Redwood Genome Project has revealed that the tree’s genome is ten times the size of the human genome (27 base pairs compared to three billion in humans), with six copies of its chromosomes (both humans and giant sequoias only have two copies) existing in a cell. It’s possible that by better understanding the redwood genome, we may uncover the precise genetic mechanism that explains how these trees have gotten so big and tall.

Yet another factor may be the trees remarkable longevity. They are survivors. The Sierra Nevadas have long experienced dramatic swings in climate, and this may be yet another of those swings that the trees will simply endure. Or maybe not. For most of the time that redwoods and sequoias have existed, they have done a remarkable job fighting off fires, swings in climate, as well as disease and bug infestations. Because their bark and heartwood are rich in compounds called polyphenols, bugs and decay-causing fungi don’t like them.

Giant sequoias in California. Erik Olsen

The thirst for fog and proximity to water sources could be the trees undoing, however. Although they have managed to survive for hundreds if not thousands of years, climate change could well be the one new variable that changes everything for the trees.

As the air heats up due to global warming, there is a rising threat to the trees’ survival. Warm air pulls moisture from leaves, and the trees often close their pores, or stomata, to maintain their water supply. When the pores close, that prevents carbon dioxide from nourishing the tree, halting photosynthesis. The climate in areas where the trees grow hasn’t yet experienced the kind of temperatures that might kill them, but we are really just at the beginning of this current era of global warming, and some scientists warn hotter temperatures could doom many trees.

That said, other studies that show the increased carbon that causes warming could actually be good for the trees. According to an ongoing study from Redwoods Climate Change Initiative, California’s coast redwood trees are now growing faster than ever. As most people know, trees consume carbon dioxide from the air, so, the scientists argue, more carbon means more growth.

We will see. The good news is that to date, no drought-induced mortality has been observed in mature coastal redwoods or giant sequoias. 

It all comes down to some kind of balance. Trees may benefit from more carbon, but if it gets too hot, trees could start to perish. That’s a bit of a conundrum, to say the least.

Photo by Nikolay Maslov on Unsplash

The prospect of losing these magnificent trees to climate change is a double whammy. Not only would a mass die-off of trees be terrible for tourism and those who simply love and study them, but trees are some of the best bulwarks we have on the planet to fight climate change. Redwoods are among the fastest-growing trees on earth; they can grow three to ten feet per year. In fact, a redwood achieves most of its vertical growth within the first 100 years of its life. Among trees that do the best job taking carbon out of the atmosphere, you could hardly do better than redwoods and sequoias.

Numerous groups are actively trying to plant more redwoods around the world in the hope that they might become a sink for carbon dioxide in the atmosphere. Indeed, there is some evidence that planting vast tracks of trees globally could have a major impact on climate change.

The Archangel Ancient Tree Archive, an organization out of Copemish, Michigan, has been “cloning” California’s big trees for nearly a decade. They take snippets of the trees from the top canopy and replant them, essentially creating genetically identical copies of the original tree. It’s more like propagating than cloning, but that’s what they call it. The group’s founder, David Milarch, believes fervently that planting large trees is our best bet in stopping climate change. This is the video story I produced about Milarch back in 2013. It’s worth a watch. He’s an interesting character with a lot of passion.

Preserving and protecting what’s left of these amazing organisms should be a priority in California. These trees are not only part of the state’s rich natural legacy, but they offer ample opportunities for tourism and strengthening the economies of the regions where they grow. It’s hard to visit Redwood National and State Parks or Sequoia & Kings Canyon National Parks and to come away with anything but awe at these magnificent organisms. California is special, and we are blessed to have these trees and the places where they grow in our state.

Other resources:

Save the Redwoods League has got a lot of interesting information about California’s redwoods, including some great YouTube videos.

Redwood National and State Parks

A lovely short film part of Nat Geo’s Short Film Showcase on redwoods.

Video by California Through My Lens: 36 Hours in Redwood National Park

Vasquez Rocks: Where Plates Collide and Captain Kirk Roamed

Photo: Erik Olsen

It’s not every day that you can drive down the highway and personally witness one of the great tectonic collisions in Earth’s history. But, if you happen to be motoring along Highway 14, the Antelope Valley Freeway, towards Palmdale near Santa Clarita, there they are:  great slabs of rock stretching skyward at steep angles out of the dirt and scrub brush, creating dramatic formations that seem otherworldly. 

This is Vasquez Rocks, one of California’s most interesting and dramatic geologic formations. 

In a way, the rocks are otherworldly. Widely used as a setting for Westerns and space dramas, they have been seen in more than 200 films and television shows. But this is no ordinary set, erected for a few months and taken down. Vasquez Rocks have taken shape over 25 million years, erected through the violent, but slow, tectonic forces of two continental plates crashing into one another. This is near the top of the San Andreas Fault, at the juncture of the North American and Pacific continental plates.

Vasquez Rocks’ tallest peak juts 150 feet above the canyon floor, offering spectacular views to those courageous (or foolhardy) enough to scramble up it’s steep and treacherous face. (I’ve done it. Many times) The fact is, though, that the rock above ground is like an iceberg. The rock below extends an extra 22,000 feet into the earth.

Credit: Erik Olsen

Over the last half-century, Vasquez Rocks have been a stage for episodes of the TV series “Star Trek: The Next Generation,” “Star Trek: Voyager” and “Star Trek: Enterprise” as well as the films, including “Star Trek VI: The Undiscovered Country” and J.J. Abrams’ 2009 “Star Trek” reboot. They served as part of the planet Vulcan landscape, home to Spock. Abrams said that the site was chosen in homage to the site’s use in the original, including the classic episode of the original Star Trek series “Arena” which pit Kirk against an ambling, hissing, intelligent lizard creature on a foreign world. 

There’s a reason that Vasquez Rocks is so often chosen as a set. The site lies at the edge of what’s known as the Thirty Mile Zone, a region around Los Angeles and Hollywood where those in the Screen Actors Guild and technical crew can report for work without paying higher premiums which dramatically increase the costs of production.

Named for Tiburcio Vásquez, a notorious California Bandit who used the formation to elude officials in 1873-1874, the rocks have made it a favorite filming location going back to the Saturday-morning westerns of the 1920s and ’30s like “The Texas Ranger” in 1931 and “The Girl and the Bandit” in 1939. Other, non-Star Trek productions include the 1994 film version of “The Flintstones” and “The Big Bang Theory.” 

Tiburcio Vásquez

Most people are aware of the rocks’ fame in cinema, but its geological history is in many ways even more interesting. Vasquez Rocks sit astride or are near several other faults. The Elkhorn Fault, an offshoot of the San Andreas Fault, runs right through the Vasquez Rocks Natural Area Park, administered by LA County. Other faults, such as the Pelona, Vasquez Canyon, Soledad, and San Gabriel Faults, all lie near to the formation, making it a boon for geologists hoping to better understand California’s geological and seismographic history. 

(Hikers: It should also be noted that the site also serves as a small section of The Pacific Crest Trail.) 

The rocks consist mainly of sandstone that accumulated over millions of years from the erosion of the nearby San Gabriel Mountains. Rain, landslides, wind, flooding, and earthquakes, all played a role, depositing vast amounts of sand and gravel in the region.

Over time, two continental plates – the North American and the Pacific plates – crashed into one another, consuming another plate called the Farallon Plate, which has since disappeared. The process led to an uplifting of the giant slabs that now rise above the otherwise flat terrain. The same process also created California’s best-known fault: the San Andreas, which lies only miles away and slices the state California, finally heading into the Pacific Ocean near San Francisco.

The region is a hotbed of geological activity. Two major quakes have taken place in the last 50 years: the Sylmar earthquake of 1971, which killed 64 people, and the 6.7 magnitude 1994 Northridge earthquake, which killed 57 people and injured another 8,700. Most scientists believe we are due for another big earthquake in the relative near future (geologically-speaking). 

Credit: Erik Olsen

The rocks at Vaquez point at angles between 45-52 degrees, looking at times like huge ships under sail. In fact, formations of this type are known as “hogs back ridges” since they also resemble an arching backbone. Scientists believe they vary in age from 10 to 40 million years old.

Geologists estimate that the rocks sink deep into the earth, perhaps as far as 4 miles. What we see is very much the tip of the iceberg.

For hundreds of millions of years, most of California was found beneath the sea. Very few dinosaur bones have ever been found in California. One exception is the hadrosaur (which also happens to be the state dinosaur). Hadrosaurs were large herbivorous dinosaurs that lived near the end of the Cretaceous. However, marine fossils are plentiful in the region.

There are plenty of wonderful hikes around Vasquez rocks, but seeing them up close is easy, with parking directly beneath some of the most impressive formations. They are very simple to reach from LA, located just off Highway 14. So the next time you happen to be out there, take a moment to gaze and ponder the strange, lovely rocks that have played such a big role in California’s deep geological and cinematographic history.

by Erik Olsen

The Majesty and Mystery of California’s Bristlecone Pines

Bristlecone Pine

Lying east of the Owens Valley and the jagged crags of the Sierra Nevadas, the White Mountains rise high above the valley floor, reaching over 14,000 feet, nearly as high as their far better-known relatives, the Sierra Nevadas. Highway 168 runs perpendicular to highway 395 out of Big Pine and leads up into the mountains to perhaps the most sacred place in California.

Far above sea level, where the air is thin, live some of the most amazing organisms on the planet: the ancient bristlecone pines. To the untrained eye, the bristlecone seems hardly noteworthy. Gnarled and oftentimes squat, especially when compared to the majestic coastal redwoods and giant sequoias living near the coast further west, they hardly seem like mythical beings. But to scientists, they are a trove of information, offering clues to near immortality and to the many ways that the earth’s climate has changed over the last 5,000 years. 

In the January 20 edition of the New Yorker, music writer Alex Ross writes about the trees and the scientists who are trying to unlock the secrets of the bristlecone’s unfathomable endurance. The trees, he writes, “seem sentinel-like”.

Bristlecones are the longest living organism on earth. The tree’s Latin name is Pinus longaeva, and it grows exclusively in subalpine regions of the vast area known to geologists as the Great Basin, which stretches from the eastern Sierra Nevadas to the Wasatch Range, in Utah. Bristlecones grow between 9,800 and 11,000 feet above sea level, where some people get dizzy and there are few other plants or animals that thrive. The greatest abundance of bristlecones can be found just east of the town of Bishop, California in the Ancient Bristlecone Pine Forest. There, a short walk from where you park your car, you can stroll among these antediluvian beings as they imperceptibly twist, gnarl and reach towards the heavens. 

Video of ancient bristlecone pine that I shot and put together.

While most of the bristlecones in the national Ancient Bristlecone Pine Forest are mere hundreds of years old, there are many that are far older. Almost ridiculously so. Methuselah, a Great Basin bristlecone, is 4,851 years old, as measured by its rings, taken by scientists decades ago using a drilled core. Consider that for a moment: this tree, a living organism, planted its tentacle-like roots into the soil some 2000 years before the birth of Christ, around the time that the Great Pyramids of Egypt were built. By contrast, the oldest human being we know of lived just 122 years. That’s 242 human generations passing in the lifetime of a single bristlecone that still stands along a well-trodden trail in the high Sierras. 

Bristlecone and starry sky: National Park Service
National Park Service

That said, if you were to try and see Methuselah for yourself, you are out of luck. The Forest Service is so protective of its ancient celebrity that it will not even share its picture. What’s more, it’s probably the case that there are bristlecones that are even older than Methuselah. Scientists think there could be trees in the forest that are over 5,000 years old. 

How the bristlecone has managed this incredible feat of endurance is a mystery to researchers. Many other tree species are prone to insect infestations, wildfires, climate change. In fact, over the last two decades, the vast lodgepole pine forests of the Western United States and British Columbia have been ravaged by the pine beetle. Millions of acres of trees have been lost, including more than 16 million of the 55 million acres of forest in British Columbia.  

But insects don’t seem to be a problem for bristlecones. Bristlecone wood is so dense that mountain-pine beetles and other pests can rarely burrow their way into it. Further, the region where the bristlecones live tends to be sparse with vegetation, and thus far less prone to wildfire. 

Jeff Sullivan
Jeff Sullivan

So how do the trees manage to live so long? 

A recent study by scientists at the University of North Texas looked at the amazing longevity of the ginkgo tree, examining individuals in China and the US that have lived for hundreds, perhaps more than a thousand years. One thing they found is that the trees’ immune systems remain largely intact, even youthful, throughout their lives. It turns out the genes in the cambium, or the cylinder of tissue beneath the bark, contain no “program” for senescence, or death, but continue making defenses even after hundreds of years. Researchers think the same thing might be happening in the bristlecone. This is not the case in most organisms and certainly not humans. Like replicants in the movie Blade Runner, we seem to have a built-in clock in our cells that only allows us to live for so long. (I want more life, f$@$@!

Scientists at the University of Arizona’s Laboratory of Tree-Ring Research (LTRR) have built up the world’s largest collection of bristlecone cross-sections, which they carefully examine under the microscope, looking for clues about how the trees have managed to survive so long, and how they can inform us of the many ways the earth’s climate has changed over the millennia.

The LTRR houses the nation’s only dendrochronology lab (the term for the study of tree rings), and the researchers there have made several discoveries using tree cores that have changed or confirmed climate models. For example, in 1998, the climatologist Michael E. Mann published the “hockey stick graph,” that revealed a steep rise in global mean temperature from about 1850 onward (i.e. the start of the industrial revolution). There was intense debate about this graph, with many scientists and climate change skeptics saying that Mann’s projections were too extreme. But numerous subsequent studies, some using the trees’ rings new models, confirmed the hockey-stick model. 

The bristlecones will continue to help us understand the way the earth is changing and to see into the deep human past in a way few other living organisms can do. They also improve our understanding of possible future environmental scenarios and the serious consequences of allowing carbon levels in the atmosphere to continue to grow. 

In this sense, they truly are sentinels.

But setting aside the science for a moment, it should be said that the trees themselves, in their gnarled, frozen posture, are truly are beautiful. They should be protected and preserved, admired and adulated. Indeed, Federal law prohibits any attempt to damage the trees, including taking a mere splinter from the forest floor. The trees have also become an obsession for photographers, particularly those who favor astrophotography. A quick search on Instagram reveals a stunning collection of images showing the majesty and haunting beauty of these ancient trees. 

So, if you are ever headed up highway 395 into the Sierras, it is well worth the effort to make the right-hand turn out of Big Pine to visit the Ancient Bristlecone Pine Forest. The air is thin, but the views are spectacular. And where else can you walk among the oldest living things on the planet?

Note: there is a wonderful video produced by Patagonia on the bristlecones and some of the scientists who study them. It’s well worth watching.